Holography, Unfolding and Higher-Spin Theories

arXiv:1203.5554

M.A.Vasiliev

Lebedev Institute, Moscow

Round Table Frontiers of Mathematical Physics

Dubna, December 18 2012

HS gauge theory

Higher derivatives in interactions

A.Bengtsson, I.Bengtsson, Brink (1983), Berends, Burgers, van Dam (1984)

$$S = S^2 + S^3 + \dots, \qquad S^3 = \sum_{p,q,r} (D^p \varphi) (D^q \varphi) (D^r \varphi) \rho^{p+q+r+\frac{1}{2}d-3}$$

HS Gauge Theories (m = 0):

Fradkin, M.V. (1987)

$$AdS_d$$
: $[D_n, D_m] \sim \rho^{-2} = \lambda^2$

Non-locality beyond any (=Plank) scale: Quantum Gravity?!

AdS/CFT:

$$(3d, m = 0) \otimes (3d, m = 0) = \sum_{s=0}^{\infty} (4d, m = 0)$$
 Flato, Fronsdal (1978);

Sundborg (2001), Sezgin, Sundell (2002,2003), Klebanov, Polyakov (2002), Giombi, Yin (2009)..., Maldacena, Zhiboedov (2011,2012)

Results

- CFT_3 dual of AdS_4 HS theory: 3d conformal HS theory
- Holography: Unfolding

Plan

- I Unfolded dynamics and holographic duality
- **II** Free massless HS fields in AdS_4
- III Conserved currents and massless equations
- IV AdS_4 HS theory as 3d conformal HS theory
- V Holographic duality of relativistic and non-relativistic theories
- VI Conclusion

Unfolded dynamics

First-order form of differential equations

$$\dot{q}^{i}(t) = \varphi^{i}(q(t))$$
 initial values: $q^{i}(t_{0})$

Unfolded dynamics: multidimensional covariant generalization

$$\begin{aligned} \frac{\partial}{\partial t} \to d \,, \qquad q^i(t) \to W^{\Omega}(x) &= dx^{n_1} \wedge \ldots \wedge dx^{n_p} \\ d\mathbf{W}^{\Omega}(\mathbf{x}) &= \mathbf{G}^{\Omega}(\mathbf{W}(\mathbf{x})) \,, \qquad \mathbf{d} = d\mathbf{x}^{\mathbf{n}} \partial_{\mathbf{n}} \end{aligned}$$

 $G^{\Omega}(W)$: function of "supercoordinates" W^{Φ}

$$G^{\Omega}(W) = \sum_{n=1}^{\infty} f^{\Omega} \Phi_{1} \dots \Phi_{n} W^{\Phi_{1}} \wedge \dots \wedge W^{\Phi_{n}}$$

d > 1: Nontrivial compatibility conditions

$$G^{\Phi}(W) \wedge \frac{\partial G^{\Omega}(W)}{\partial W^{\Phi}} \equiv 0$$

Any solution: FDA Sullivan (1968); D'Auria and Fre (1982)

The unfolded equation is invariant under the gauge transformation

$$\delta W^{\Omega}(x) = d\varepsilon^{\Omega}(x) + \varepsilon^{\Phi}(x) \frac{\partial G^{\Omega}(W(x))}{\partial W^{\Phi}(x)},$$

Vacuum geometry

 $\omega = \omega^{\alpha} T_{\alpha}$: *h* valued 1-form.

$$G(\omega) = -\omega \wedge \omega \equiv -\frac{1}{2}\omega^{\alpha} \wedge \omega^{\beta}[T_{\alpha}, T_{\beta}]$$

the unfolded equation with $W = \omega$ has the zero-curvature form

$$d\omega + \omega \wedge \omega = 0.$$

Compatibility condition: Jacobi identity for h.

FDA: usual gauge transformation of the connection ω .

Zero-curvature equations: background geometry in a coordinate independent way.

If h is Poincare or anti-de Sitter algebra it describes Minkowski or AdS_a space-time

Properties

- General applicability
- Manifest (HS) gauge invariance
- Invariance under diffeomorphisms Exterior algebra formalism
- Interactions: nonlinear deformation of $G^{\Omega}(W)$
- Local degrees of freedom are in 0-forms $C^i(x_0)$ at any $x = x_0$ (as $q(t_0)$) infinite-dimensional module dual to the space of single-particle states
- Independence of ambient space-time

Geometry is encoded by $G^{\Omega}(W)$

Unfolding and holographic duality

- Unfolded formulation unifies various dual versions of the same system. Duality in the same space-time:
- ambiguity in what is chosen to be dynamical or auxiliary fields.
- Holographic duality between theories in different dimensions: universal unfolded system admits different space-time interpretations.
- Extension of space-time without changing dynamics by letting the differential d and differential forms W to live in a larger space

$$d = dX^n \frac{\partial}{\partial X^n} \to \tilde{d} = dX^n \frac{\partial}{\partial X^n} + d\hat{X}^n \frac{\partial}{\partial \hat{X}^n}, \qquad dX^n W_n \to dX^n W_n + d\hat{X}^n \hat{W}_n,$$

 $\widehat{X}^{\widehat{n}}$ are additional coordinates

$$\tilde{d}W^{\Omega}(X,\hat{X}) = G^{\Omega}(W(X,\hat{X}))$$

Two unfolded systems in different space-times are equivalent (dual) if they have the same unfolded form.

Direct way to establish holographic duality between two theories: unfold both to see whether their unfolded formulations coincide.

Particular space-time interpretation of a universal unfolded system, e.g, whether a system is on-shell or off-shell, depends not only on $G^{\Omega}(W)$ but, in the first place, on space-time M^d and chosen vacuum solution $W_0(X)$.

Given unfolded system generates a class of holographically dual theories in different dimensions.

Free massless fields in AdS_4

Infinite set of spins s = 0, 1/2, 1, 3/2, 2...

Fermions require doubling of fields

 $\omega^{ii}(y,\bar{y} \mid x), \qquad C^{i1-i}(y,\bar{y} \mid x), \qquad i = 0, 1, \\
\bar{\omega}^{ii}(y,\bar{y} \mid x) = \omega^{ii}(\bar{y},y \mid x), \qquad \bar{C}^{i1-i}(y,\bar{y} \mid x) = C^{1-ii}(\bar{y},y \mid x) \\
A(y,\bar{y} \mid x) = i \sum_{n,m=0}^{\infty} \frac{1}{n!m!} y_{\alpha_1} \dots y_{\alpha_n} \bar{y}_{\dot{\beta}_1} \dots \bar{y}_{\dot{\beta}_m} A^{\alpha_1 \dots \alpha_n} \dot{\beta}_{1} \dots \dot{\beta}_{m}(x)$

The unfolded system for free massless fields is MV (1989)

$$\star \quad R_1^{ii}(y,\overline{y} \mid x) = \eta \overline{H}^{\dot{\alpha}\dot{\beta}} \frac{\partial^2}{\partial \overline{y}^{\dot{\alpha}} \partial \overline{y}^{\dot{\beta}}} C^{1-ii}(0,\overline{y} \mid x) + \overline{\eta} H^{\alpha\beta} \frac{\partial^2}{\partial y^{\alpha} \partial y^{\beta}} C^{i1-i}(y,0 \mid x)$$
$$\star \quad \tilde{D}_0 C^{i1-i}(y,\overline{y} \mid x) = 0$$

$$R_1(y,\bar{y} \mid x) = D_0^{ad} \omega(y,\bar{y} \mid x) \qquad H^{\alpha\beta} = e^{\alpha}{}_{\dot{\alpha}} \wedge e^{\beta\dot{\alpha}}, \quad \overline{H}^{\dot{\alpha}\dot{\beta}} = e_{\alpha}{}^{\dot{\alpha}} \wedge e^{\alpha\dot{\beta}}$$

$$D_0^{ad}\omega = D^L - \lambda e^{\alpha\dot{\beta}} \left(y_\alpha \frac{\partial}{\partial \bar{y}^{\dot{\beta}}} + \frac{\partial}{\partial y^\alpha} \bar{y}_{\dot{\beta}} \right) , \qquad \tilde{D}_0 = D^L + \lambda e^{\alpha\dot{\beta}} \left(y_\alpha \bar{y}_{\dot{\beta}} + \frac{\partial^2}{\partial y^\alpha \partial \bar{y}^{\dot{\beta}}} \right)$$

$$D^{L} = d_{x} - \left(\omega^{\alpha\beta}y_{\alpha}\frac{\partial}{\partial y^{\beta}} + \bar{\omega}^{\dot{\alpha}\dot{\beta}}\bar{y}_{\dot{\alpha}}\frac{\partial}{\partial\bar{y}^{\dot{\beta}}}\right)$$

Non-Abelian HS algebra

Star product

$$(f * g)(Y) = \int dS dT f(Y + S)g(Y + T) \exp -iS_A T^A$$
$$[Y_A, Y_B]_* = 2iC_{AB}, \qquad C_{\alpha\beta} = \epsilon_{\alpha\beta}, \qquad C_{\dot{\alpha}\dot{\beta}} = \epsilon_{\dot{\alpha}\dot{\beta}}$$

Non-Abelian HS curvature

 $R_1(y,\bar{y}|x) \to R(y,\bar{y}|x) = d\omega(y,\bar{y}|x) + \omega(y,\bar{y}|x) * \omega(y,\bar{y}|x)$

 $\tilde{D}_0 C(y, \bar{y}|x) \to \tilde{D}C(y, \bar{y}|x) = dC(y, \bar{y}|x) + \omega(y, \bar{y}|x) * C(y, \bar{y}|x) - C(y, \bar{y}|x) * \omega(y, -\bar{y}|x)$

3*d* conformal equations

Conformal invariant massless equations in d = 3

 $dx^{\alpha\beta}\left(\frac{\partial}{\partial x^{\alpha\beta}} \pm \frac{\partial^2}{\partial y^{\alpha} \partial y^{\beta}}\right) C(y|x) = 0, \qquad \alpha, \beta = 1, 2 \qquad \text{Shaynkman, MV (2001)}$

Rank r unfolded equations: tensoring of Fock modules Gelfond, MV (2003)

$$dx^{\alpha\beta}\left(\frac{\partial}{\partial x^{\alpha\beta}} + \eta_{ij}\frac{\partial^2}{\partial y_i^{\alpha}\partial y_j^{\beta}}\right)C(y|x) = 0, \qquad i, j = 1, \dots r.$$

For diagonal η^{ij} higher-rank equations are satisfied by

$$C(y_i|x) = C_1(y_1|x)C_2(y_2|x)\ldots C_r(y_r|x).$$

Rank-two equations: conserved currents

$$\left\{\frac{\partial}{\partial x^{\alpha\beta}} - \frac{\partial^2}{\partial y^{(\alpha}\partial u^{\beta)}}\right\}T(u, y|x) = 0$$

T(u, y|x): generalized stress tensor. Rank-two equation is obeyed by

$$T(u, y | x) = \sum_{i=1}^{N} C_{+i}(y - u | x) C_{-i}(u + y | x)$$

Rank-two fields: bilocal fields in the twistor space.

Dynamical currents (primaries)

 $J(u|x) = T(u, 0|x), \qquad \tilde{J}(y|x) = T(0, y|x) \qquad \text{Gelfond, MV (2003)}$ $J^{asym}(u, y|x) = u_{\alpha}y^{\alpha} \left(\frac{\partial^2}{\partial u^{\beta} \partial y_{\beta}} T(u, y|x)\Big|_{u=y=0}\right)$

J(u|x) generates 3d currents of all integer and half-integer spins

$$J(u|x) = \sum_{2s=0}^{\infty} u^{\alpha_1} \dots u^{\alpha_{2s}} J_{\alpha_1 \dots \alpha_{2s}}(x), \quad \tilde{J}(u|x) = \sum_{2s=0}^{\infty} u^{\alpha_1} \dots u^{\alpha_{2s}} \tilde{J}_{\alpha_1 \dots \alpha_{2s}}(x).$$
$$J^{asym}(u, y|x) = u_{\alpha} y^{\alpha} J^{asym}(x)$$

$$\Delta J_{\alpha_1...\alpha_{2s}}(x) = \Delta \tilde{J}_{\alpha_1...\alpha_{2s}}(x) = s+1 \qquad \Delta J^{asym}(x) = 2$$

Differential equations: conventional conservation condition

$$\frac{\partial}{\partial x^{\alpha\beta}} \frac{\partial^2}{\partial u_\alpha \partial u_\beta} J(u|x) = 0, \qquad \frac{\partial}{\partial x^{\alpha\beta}} \frac{\partial^2}{\partial y_\alpha \partial y_\beta} \tilde{J}(y|x) = 0$$

3d conformal setup in AdS_4 HS theory

For manifest conformal invariance introduce

$$y_{\alpha}^{+} = \frac{1}{2}(y_{\alpha} - i\bar{y}_{\alpha}), \qquad y_{\alpha}^{-} = \frac{1}{2}(\bar{y}_{\alpha} - iy_{\alpha}), \qquad [y_{\alpha}^{-}, y^{+\beta}]_{*} = \delta_{\alpha}^{\beta}$$

3d conformal realization of the algebra $sp(4; \mathbb{R}) \sim o(3, 2)$

$$L^{\alpha}{}_{\beta} = y^{+\alpha}y^{-}_{\beta} - \frac{1}{2}\delta^{\alpha}{}_{\beta}y^{+\gamma}y^{-}_{\gamma}, \qquad D = \frac{1}{2}y^{+\alpha}y^{-}_{\alpha}$$
$$P_{\alpha\beta} = iy^{-}_{\alpha}y^{-}_{\beta}, \qquad K^{\alpha\beta} = -iy^{+\alpha}y^{+\beta}$$

Conformal weight of HS gauge fields

$$[D, \omega(y^{\pm}|X)] = \frac{1}{2} \left(y^{+\alpha} \frac{\partial}{\partial y^{+\alpha}} - y_{\alpha}^{-} \frac{\partial}{\partial y_{\alpha}^{-}} \right) \omega(y^{\pm}|X).$$

Pullback $\hat{\omega}(y^{\pm}|x)$ of $\omega(y^{\pm}|x)$ to Σ : 3d conformal HS gauge fields

Holography at infinity

 AdS_4 foliation: $x^n = (x^a, z)$: x^a are coordinates of leafs (a = 0, 1, 2,) z is a foliation parameter

Poincaré coordinates

$$W = \frac{i}{z} d\mathbf{x}^{\alpha\beta} y_{\alpha}^{-} y_{\beta}^{-} - \frac{dz}{2z} y_{\alpha}^{-} y^{+\alpha}$$
$$e^{\alpha\dot{\alpha}} = \frac{1}{2z} dx^{\alpha\dot{\alpha}}, \qquad \omega^{\alpha\beta} = -\frac{i}{4z} d\mathbf{x}^{\alpha\beta}, \qquad \bar{\omega}^{\dot{\alpha}\dot{\beta}} = \frac{i}{4z} d\mathbf{x}^{\dot{\alpha}\dot{\beta}}$$
$$d\mathbf{x} + \frac{i}{z} d\mathbf{x}^{\alpha\beta} \left(y_{\alpha} \frac{\partial}{\partial y^{\beta}} - \bar{y}_{\alpha} \frac{\partial}{\partial \bar{y}^{\beta}} + y_{\alpha} \bar{y}_{\beta} - \frac{\partial^{2}}{\partial y^{\alpha} \partial \bar{y}^{\beta}} \right) \Big] C(y, \bar{y} | \mathbf{x}, z) = 0$$

Rescaling y^{α} and \bar{y}^{α} via

$$C(y, \bar{y} | \mathbf{x}, z) = z \exp(y_{\alpha} \bar{y}^{\alpha}) T(w, \bar{w} | \mathbf{x}, z)$$
$$w^{\alpha} = z^{1/2} y^{\alpha}, \qquad \bar{w}^{\alpha} = z^{1/2} \bar{y}^{\alpha}$$

,

 $T(w, \bar{w} | \mathbf{x}, z)$ satisfies the 3*d* conformal invariant current equation

$$\left[d_{\mathbf{x}} - id\mathbf{x}^{\alpha\beta} \frac{\partial^2}{\partial w^{\alpha} \partial \bar{w}^{\beta}}\right] T(w, \bar{w} | \mathbf{x}, z) = 0$$

Connections

Setting

$$W^{jj}(y^{\pm}|\mathbf{x},z) = \Omega^{jj}(v^{-},w^{+}|\mathbf{x},z)$$
$$\mathbf{v}^{\pm} = \mathbf{z}^{-1/2}\mathbf{y}^{\pm}, \qquad \mathbf{w}^{\pm} = \mathbf{z}^{1/2}\mathbf{y}^{\pm}$$

manifest *z*-dependence disappears

$$D_{\mathbf{x}}\Omega^{jj}(v^{-},w^{+}|\mathbf{x},z) = \left(d_{\mathbf{x}} + 2id\mathbf{x}^{\alpha\beta}v_{\alpha}^{-}\frac{\partial}{\partial w^{+\beta}}\right)\Omega^{jj}(v^{-},w^{+}|\mathbf{x},z)$$

Using

$$w_{\alpha} = w_{\alpha}^{+} + izv_{\alpha}^{-}, \qquad \bar{w}_{\alpha} = iw_{\alpha}^{+} + zv_{\alpha}^{-}$$

in the limit $z \rightarrow 0$ free HS equations take the form

$$\star \quad D_{\mathbf{x}}\Omega_{\mathbf{x}}^{jj}(v^{-},w^{+}|\mathbf{x},0) = d\mathbf{x}_{\alpha}^{\gamma}d\mathbf{x}_{\beta\gamma}\frac{\partial^{2}}{\partial w^{+\alpha}\partial w^{+\beta}}\mathcal{T}^{jj}(w^{+},0\mid\mathbf{x},0),$$

$$\star \left[d_{\mathbf{x}} - i d\mathbf{x}^{\alpha\beta} \frac{\partial^2}{\partial w^{+\alpha} \partial w^{-\beta}} \right] T^{j\,1-j}(w^+, w^- | \mathbf{x}, 0) = 0.$$

$$\mathcal{T}^{jj}(w^+, w^- | \mathbf{x}, 0) = \eta T^{j\,1-j}(w^+, w^- | \mathbf{x}, 0) - \bar{\eta} T^{1-j\,j}(-iw^-, iw^+ | \mathbf{x}, 0)$$

Towards nonlinear 3d conformal HS theory

Conformal HS theory is nonlinear since conformal HS curvatures inherited from the AdS_4 HS theory are non-Abelian Fradkin, Linetsky (1990)

$$R_{\mathbf{x}\mathbf{x}}(v^{-}, w^{+} | \mathbf{x}) = d_{\mathbf{x}}\Omega_{\mathbf{x}}(v^{-}, w^{+} | \mathbf{x}) + \Omega_{\mathbf{x}}(v^{-}, w^{+} | \mathbf{x}) \star \Omega_{\mathbf{x}}(v^{-}, w^{+} | \mathbf{x})$$

It is important

 $[v_{\alpha}^{-}, w^{+\beta}]_{\star} = \delta_{\alpha}^{\beta}$

The equation on 0-forms deforms to nonlinear twisted adjoint representation

$$dT(w^{\pm}|x) + \Omega(\frac{\partial}{\partial w^{\pm\beta}}, w^{\pm}_{\alpha}) \circ T(w^{\pm}|x) - T(w^{\pm}|x) \circ \Omega(-i\eta \frac{\partial}{\partial w^{-\alpha}}, -i\eta w^{-}|x) = O(T^{2})$$

Matter fields can be added via the Fock module

$$(d + \Omega_0(v^-, w^+ | \mathbf{x})) \star C^i(w^+ | \mathbf{x}) \star F = 0$$

Reduction to free *CFT*₃

The unfolded equation

$$D_{\mathbf{x}}\Omega_{\mathbf{x}}^{jj}(v^{-},w^{+}|\mathbf{x},0) = \mathcal{H}^{\alpha\beta}\frac{\partial^{2}}{\partial w^{+\alpha}\partial w^{+\beta}}\mathcal{T}^{jj}(w^{+},0|\mathbf{x},0)$$

remains free if

$$\mathcal{T}^{jj} = 0 \qquad \longrightarrow J^{asym} = 0 \qquad \text{or} \qquad J^{sym} = 0$$

depending on whether A-model or B-model is considered. For these cases the model remains free in accordance with the Klebanov-Polyakov Sezgin-Sundell conjecture.

Free models are equivalent to the reductions of the HS theory with respect to *P*-involution $y \leftrightarrow \overline{y}$ which is possible for the *A* and *B* models.

For HS theory with general phase η parameter such reduction is not possible: no realization as a free conformal theory.

Non-Abelian contribution of conformal HS connections has to be taken into account.

Higher-spin theory and quantum mechanics

Rank-one equation can be rewritten in the form

$$\left(ih\frac{\partial}{\partial X^{AB}} + \frac{h^2}{2m}\frac{\partial^2}{\partial Y^A\partial Y^B}\right)\Psi(Y|X) = 0, \qquad A, B = 1, \dots M$$

Algebra of symmetries: algebra of polynomials of $P_A = \frac{\partial}{\partial Y^A}$ and Y^B : conformal HS algebra. sp(2M):

$$K^{AB} = Y^A Y^B$$
, $L^A{}_B = \{Y^A, P_B\}$, $P_{AB} = P_A P_B$

Time-like directions in \mathcal{M}_M are associated with positive-definite X^{AB}

$$X^{AB} = tM\delta^{AB}$$

Restriction to t gives M-dimensional Schrodinger equation

$$\left(ih\frac{\partial}{\partial t} + \frac{h^2}{2m}\delta^{AB}\frac{\partial^2}{\partial Y^A\partial Y^B}\right)\Psi(Y|t) = 0$$

 Y^A are now interpreted as Galilean coordinates.

In unfolded dynamics it is easy to introduce coordinates in which any symmetry h of a given system acts geometrically by introducing a non-zero flat connection of h. Different symmetries require different spaces and connections. Description of the same system in different space-times gives holographically dual theories.

Being obvious in unfolded dynamics, where it refers to the same twistor space (Y^A) in other approaches holographic duality may look obscure.

Maximal finite dimensional symmetry algebra $sph(M|\mathbb{R})$ Valenzuela (2009)

$$T_{AB} = -\frac{i}{2} Y_A Y_B, \qquad t_A = Y_A$$

 $[T_{AB}, T_{CD}] = C_{BC}T_{AD} + C_{AC}T_{BD} + C_{BD}T_{AC} + C_{AD}T_{BC}$

$$[T_{AB}, t_C] = C_{BC}t_A + C_{AC}t_B, \qquad [t_A, t_B] = 2iC_{AB}$$

Relativistic and nonrelativistic symmetries of Schrodinger equation belong to $sph(M|\mathbb{R})$. Each symmetry acts geometrically in respective space. Any HS geometry is holographically dual to some quantum mechanics. For example, AdS geometry is dual to harmonic potential

$$U(Y) = \frac{1}{2}m\omega^2 Y^A Y^B \delta_{AB}$$

where $-\Lambda \sim \lambda^2$

$$\frac{1}{2}m\omega^2 = \lambda^2 \,.$$

dS geometry is holographically dual to the inverted harmonic potential not too surprisingly in the context of inflation.

Conclusions

Holographic duality relates theories that have equivalent unfolded formulation: equivalent twistor space description.

 AdS_4 HS theory is dual to nonlinear 3d conformal HS theory of 3d currents Both of holographically dual theories are HS theories of gravity Beyond 1/N

Free boundary theories are dual to truncations of HS theories

Holography of relativistic and nonrelativistic theories

To do

- Nonlinear 3*d* conformal HS theory
- Actions
- **Generating functional for correlators**
- **Multiparticle States**
- AdS_3/CFT_2 and Gaberdiel-Gopakumar conjecture

GGI Program

"Higher Spins, Strings and Dualities"

Florence, March 18 - May 10, 2013

,

Organizers:

D.Francia, M.Gaberdiel, I.Klebanov, A.Sagnotti, D.Sorokin, M.Vasiliev

Conformal frame

D in the twisted adjoint representation is realized by the second-order operator

$$\{D, C\}_* = \left(y^{+\alpha}y^{-}_{\alpha} - \frac{1}{4}\frac{\partial^2}{\partial y^{+\alpha}\partial y^{-}_{\alpha}}\right)C$$

Fields C inherited from AdS_4 theory are not manifestly conformal.

Conformal frame: Wick star product

$$(f_N \star g_N)(y^{\pm}) = \int \mu(u^{\pm}) \exp(-u_{\alpha}^{-}u^{+\alpha}) f_N(y^{+}, y^{-} + u^{-}) g_N(y^{+} + u^{+}, y^{-})$$

$$f_N(y^{\pm}) = \exp(-\frac{1}{2} \epsilon^{\alpha\beta} \frac{\partial^2}{\partial y^{-\alpha} \partial y^{+\beta}} f(y^{\pm})$$

$$\{D_N, \ldots\}_{\star} = \frac{1}{2} \left(y^{+\alpha} \frac{\partial}{\partial y^{+\alpha}} + y^{-\alpha} \frac{\partial}{\partial y^{-\alpha}} \right) + y_{\alpha}^{-} y^{+\alpha} + 1$$

$$T(y^{\pm}|x) = \exp(-y_{\alpha}^{-}y^{+\alpha} C_N(y^{\pm}|x))$$

$$\star \quad D_N(T(y^{\pm})) = \frac{1}{2} \left(y^{+\alpha} \frac{\partial}{\partial y^{+\alpha}} + y^{-\alpha} \frac{\partial}{\partial y^{-\alpha}} + 2 \right) T(y^{\pm})$$

Doubling of AdS

z = 0 is smooth point in rescaled variables

Continuation $z \rightarrow -z$: AdS doubling

Parity automorphism

P(z) = -z

P-even solution: Neumann boundary condition*P*-odd solution: Dirichlet boundary condition

Unfolding as twistor transform

Twistor transform

 $W^{\Omega}(Y|x)$ are functions on the "correspondence space" C. Space-time M : coordinates x. Twistor space T : coordinates Y. Unfolded equations describe the Penrose transform by mapping functions on T to solutions of field equations in M.

Being simple in terms of unfolded dynamics and the corresponding twistor space T, holographic duality in terms of usual space-time may be complicated requiring solution of at least one of the two unfolded systems: a nontrivial nonlinear integral map.

Global symmetries

Global symmetry transformations that leave a vacuum connection w_0 invariant are described by $\epsilon_{gl}(x)$

$$D_0 \epsilon_{gl} = 0$$

dim h independent solutions.

h-module V can be treated as $l^{max}(V)$ -module where $l^{max}(V) = EndV$. Hence $l^{max}(V)$ is the maximal symmetry of the linear unfolded equations with dynamical fields valued in V.

Let W_0^{Ω} be some solution of the unfolded system may be containing some nonzero p_{Ω} -forms with $p_{\Omega} \neq 1$. symmetry parameters $\epsilon_{al}^{\Omega}(x)$ satisfy

$$d\varepsilon_{gl}^{\Omega} + \varepsilon_{gl}^{\Lambda} \frac{\partial G^{\Omega}(W)}{\partial W^{\Lambda}} \Big|_{W=W_0} = 0$$

The 0-form part imposes constraints: global symmetries should leave invariant vacuum values of 0-forms in the system.

Idea of Nonlinear Construction

straightforward construction of nonlinear deformation quickly gets complicated.

trick: doubling of spinors and Klein operators

$$\omega(Y|x) \longrightarrow W(Z;Y;K|x), \qquad C(Y|x) \longrightarrow B(Z;Y;K|x)$$

to be accompanied by equations that determine the dependence on Z_A in terms of "initial data"

$$\omega(Y; K|x) = W(0; Y; K|x) = \sum_{ij=1,2} k^i \overline{k}^j \omega^{ij}(Y|x)$$

$$C(Y; K|x) = B(0; Y; K|x) = \sum_{ij=1,2} k^i \overline{k}^j C^{ij}(Y|x).$$

$$S(Z, Y, K|x) = dZ^A S_A \text{ is an connection along } Z^A$$

Klein operators $K = (k, \overline{k})$ generate chirality automorphisms

$$kf(A) = f(\tilde{A})k, \quad \bar{k}f(A) = f(-\tilde{A})\bar{k}, \qquad A = (a_{\alpha}, \bar{a}_{\dot{\alpha}}): \quad \tilde{A} = A = (-a_{\alpha}, \bar{a}_{\dot{\alpha}})$$
$$P(Y) = P^{\alpha \dot{\alpha}} y_{\alpha} \bar{y}_{\dot{\alpha}} \quad \longrightarrow \quad \tilde{P}(Y) = -P(Y), \qquad \tilde{M}(Y) = M(Y).$$

Nonlinear HS Equations

HS start-product

$$(f \star g)(Z, Y) = \int dS dT f(Z + S, Y + S)g(Z - T, Y + T) \exp -iS_{\nu}T^{\nu}$$

 $[Y_A, Y_B]_{\star} = -[Z_A, Z_B]_{\star} = 2iC_{AB}, \qquad \qquad Z - Y : Z + Y \text{ normal ordering}$

Inner Klein operators:

 $\kappa = \exp i z_{\alpha} y^{\alpha}, \qquad \bar{\kappa} = \exp i z_{\dot{\alpha}} y^{\dot{\alpha}}, \qquad \kappa \star f = \tilde{f} \star \kappa, \qquad \kappa \star \kappa = 1$

HS equations:

 $\mathcal{W} = (d+W) + S, \qquad W = dx^n W_n, \quad S = dz^\alpha S_\alpha + d\bar{z}^{\dot{\alpha}} \bar{S}_{\dot{\alpha}}$

 $\mathcal{W} \star \mathcal{W} = i(dZ^A dZ_A + dz^\alpha dz_\alpha F(B) \star k \star \kappa + d\bar{z}^{\dot{\alpha}} d\bar{z}_{\dot{\alpha}} \bar{F}(B) \star \bar{k} \star \bar{\kappa}),$

$$\mathcal{W} \star B = B \star \mathcal{W}$$

Manifest gauge invariance

$$\delta \mathcal{W} = [\varepsilon, \mathcal{W}]_{\star}, \qquad \delta B = \varepsilon \star B - B \star \varepsilon, \qquad \varepsilon = \varepsilon(Z; Y; K|x)$$

Integrating out Space-Time

x - Z decomposition:

$$dW + W \star W = 0$$

$$dB + W \star B - B \star W = 0$$

$$dS + W \star S + S \star W = 0$$

$$S \star B - B \star S = 0$$

$$S \star S = i(dZ^A dZ_A + dz^\alpha dz_\alpha F(B) \star k \star \kappa + d\bar{z}^{\dot{\alpha}} d\bar{z}_{\dot{\alpha}} \bar{F}(B) \star \bar{k} \star \bar{\kappa})$$

Nontrivial equations are free of space-time differential d: Space-time dependence is locally pure gauge:

$$W(Y, Z|x) = g^{-1}(Y, Z|x) * dg(Y, Z|x)$$
$$B(Y, Z|x) = g^{-1}(Y, Z|x) * B_0(Y, Z) * g(Y, Z|x)$$

$$S(Y, Z|x) = g^{-1}(Y, Z|x) * S_0(Y, Z) * g(Y, Z|x)$$

HS equations describe two dimensional fuzzy hyperboloid in noncommutative space of Y_A and Z_A . Its radius depends on HS curvature B(x).

d = 3: no dotted spinors

Holographic conformal currents

Equation on 3*d* 0**-forms**

$$D_{\mathbf{x}}^{tw}T(y,\bar{y}|x) = d_{\mathbf{x}}T(y,\bar{y}|x) + 4d\mathbf{x}^{\alpha\beta}\frac{\partial^2}{\partial y^{\alpha}\partial\bar{y}^{\beta}}T(y,\bar{y}|x) = 0$$

describes two sets of conserved currents of all spins $s \ge 0$ distinguished by their symmetry

 $J^{sym}(y,\bar{y}|x) = T(y,\bar{y}|x) + T(y,\bar{y}|x), \qquad J^{asym}(y,\bar{y}|x) = T(y,\bar{y}|x) - T(y,\bar{y}|x),$ $\Delta(J^{sym}(0,0|x)) = 1, \qquad \Delta(J^{asym}(0,0|x)) = 2.$

Invariant functionals via *Q***–cohomology**

Equivalent form of compatibility condition

$$Q^2 = 0, \qquad Q = G^{\Omega}(W) \frac{\partial}{\partial W^{\Omega}}$$

Q-manifolds

Hamiltonian-like form of the unfolded equations

$$dF(W(x)) = Q(F(W(x)), \qquad \forall F(W).$$

Invariant functionals

$$S = \int L(W(x)), \qquad QL = 0$$
 (2005)

L = QM : total derivatives

Actions and conserved charges: Q cohomology

for off-shell and on-shell unfolded systems, respectively

2M-form

$$\Omega^{2M}(T) = \left(d\mathcal{W}_A \wedge \left(i\mathcal{W}_B dX^{AB} - dY^A \right) \right)^M \tilde{T}(\mathcal{W}, Y | X)$$

in $\mathcal{M}_M \times \mathbb{R}^M(\mathcal{W}_D) \times \mathbb{C}^M(Y^A)$

is closed in $\mathcal{M}_M \times \mathbb{R}^M(\mathcal{W}_B) \times \mathbb{C}^M(Y^A)$

The charge

$$q = q(T) = \int_{\Sigma^{2M}} \Omega^{2M}(T)$$

is independent of local variations of a 2*M*-dimensional surface Σ^{2M} .

- Remarkable output: conserved charges can be expressed as integrals over the twistor space ${\rm T}$
- Solutions of current equation form a commutative algebra

$$\eta(\mathcal{W}, Y | X) = \varepsilon(\mathcal{W}_A, Y^C - i X^{CB} \mathcal{W}_B), \qquad \widetilde{T}_{\eta}(\mathcal{W}, Y | X) = \eta(\mathcal{W}, Y | X) \widetilde{T}(\mathcal{W}, Y | X)$$

 $\eta(\mathcal{W}, Y | X)$ is a polynomial parameter representing global HS symmetry. $q(\tilde{T}_{\eta})$ with various $\eta(\mathcal{W}, Y | X)$ generate complete set of conformal HS conserved charges. M = 2: all conserved charges built from bilinears of free 3*d* massless fields.

Higher rank as higher dimension

A rank-r field in $\mathcal{M}_M \sim$ a rank-one field in \mathcal{M}_{rM} with coordinates X_{ij}^{AB} .

$$Y_i^A \to Y^{\widetilde{A}}, \qquad \widetilde{A} = 1 \dots rM$$

Embedding of \mathcal{M}_M into \mathcal{M}_{rM}

$$X_{11}^{AB} = X_{22}^{AB} = \dots = X_{rr}^{AB} = X^{AB}$$

3*d* conformal currents:

a rank-two field in \mathcal{M}_2 $(d = 3) \sim$ rank-one field in \mathcal{M}_4 (d = 4). A single rank-one field in \mathcal{M}_4 describes all 4d conformal fields. Realization of Flato-Fronsdal Thm What if the system is deformed by a potential? Formally, this does not affect the consideration much. In presence of potential U(Y) the equation

$$\left(ih\frac{\partial}{\partial t} + \frac{h^2}{2m}\delta^{AB}\frac{\partial^2}{\partial Y^A\partial Y^B} - U(Y)\right)\Psi(Y|t) = 0$$

remains linear, hence exhibiting infinite symmetries. It can be interpreted as flatness condition

$$D\Psi(Y|t) = 0, \qquad D = dt \frac{\partial}{\partial t} + \Omega, \qquad \Omega = ih^{-1}dtH, \qquad H = -\frac{h^2}{2m}\delta^{AB}\frac{\partial^2}{\partial Y^A \partial Y^B}$$

In the 1d case with the single coordinate t, any connection is flat. Hence it can be represented in the pure gauge form which is simply

$$\Omega = \exp -ih^{-1}Ht \, d \, \exp ih^{-1}Ht$$