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HS gauge theory

Higher derivatives in interactions

A.Bengtsson, I.Bengtsson, Brink (1983), Berends, Burgers, van Dam (1984)

S = S2 + S3 + . . . , S3 =
∑
p,q,r

(Dpϕ)(Dqϕ)(Drϕ)ρp+q+r+1
2d−3

HS Gauge Theories (m = 0): Fradkin, M.V. (1987)

AdSd : [Dn, Dm] ∼ ρ−2 = λ2

Non-locality beyond any (=Plank) scale: Quantum Gravity?!

AdS/CFT:

(3d,m = 0)⊗ (3d,m = 0) =
∑∞
s=0(4d,m = 0) Flato, Fronsdal (1978);

Sundborg (2001), Sezgin, Sundell (2002,2003), Klebanov, Polyakov (2002),

Giombi, Yin (2009). . . , Maldacena, Zhiboedov (2011,2012)
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Results

CFT3 dual of AdS4 HS theory: 3d conformal HS theory

Holography: Unfolding

Plan

I Unfolded dynamics and holographic duality
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V Holographic duality of relativistic and non-relativistic theories

VI Conclusion
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Unfolded dynamics

First-order form of differential equations

q̇i(t) = ϕi(q(t)) initial values: qi(t0)

Unfolded dynamics: multidimensional covariant generalization

∂

∂t
→ d , qi(t)→WΩ(x) = dxn1 ∧ . . . ∧ dxnp

dWΩ(x) = GΩ(W(x)) , d = dxn∂n

GΩ(W ) : function of “supercoordinates” WΦ

GΩ(W ) =
∞∑
n=1

fΩ
Φ1...ΦnW

Φ1 ∧ . . . ∧WΦn

d > 1: Nontrivial compatibility conditions

GΦ(W ) ∧
∂GΩ(W )

∂WΦ
≡ 0

Any solution: FDA Sullivan (1968); D’Auria and Fre (1982)

The unfolded equation is invariant under the gauge transformation

δWΩ(x) = dεΩ(x) + εΦ(x)
∂GΩ(W (x))

∂WΦ(x)
,
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Vacuum geometry

ω = ωαTα: h valued 1-form.

G(ω) = −ω ∧ ω ≡ −
1

2
ωα ∧ ωβ[Tα, Tβ]

the unfolded equation with W = ω has the zero-curvature form

dω + ω ∧ ω = 0 .

Compatibility condition: Jacobi identity for h.

FDA: usual gauge transformation of the connection ω.

Zero-curvature equations: background geometry in a coordinate inde-

pendent way.

If h is Poincare or anti-de Sitter algebra it describes Minkowski or AdSd

space-time
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Properties

• General applicability

• Manifest (HS) gauge invariance

• Invariance under diffeomorphisms

Exterior algebra formalism

• Interactions: nonlinear deformation of GΩ(W )

• Local degrees of freedom are in 0-forms Ci(x0) at any x = x0 (as q(t0))

infinite-dimensional module dual to the space of single-particle states

• Independence of ambient space-time

Geometry is encoded by GΩ(W )
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Unfolding and holographic duality

Unfolded formulation unifies various dual versions of the same system.

Duality in the same space-time:

ambiguity in what is chosen to be dynamical or auxiliary fields.

Holographic duality between theories in different dimensions:

universal unfolded system admits different space-time interpretations.

Extension of space-time without changing dynamics by letting the dif-

ferential d and differential forms W to live in a larger space

d = dXn ∂

∂Xn
→ d̃ = dXn ∂

∂Xn
+ dX̂n̂ ∂

∂X̂n̂
, dXnWn → dXnWn + dX̂n̂Ŵn̂ ,

X̂n̂ are additional coordinates

d̃WΩ(X, X̂) = GΩ(W (X, X̂))
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Two unfolded systems in different space-times are equivalent (dual) if

they have the same unfolded form.

Direct way to establish holographic duality between two theories: unfold

both to see whether their unfolded formulations coincide.

Particular space-time interpretation of a universal unfolded system, e.g,

whether a system is on-shell or off-shell, depends not only on GΩ(W )

but, in the first place, on space-time Md and chosen vacuum solution

W0(X).

Given unfolded system generates a class of holographically dual theories

in different dimensions.
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Free massless fields in AdS4

Infinite set of spins s = 0,1/2,1,3/2,2 . . .

Fermions require doubling of fields

ωii(y, ȳ | x) , Ci1−i(y, ȳ | x) , i = 0,1 ,

ω̄ii(y, ȳ | x) = ωii(ȳ, y | x) , C̄i1−i(y, ȳ | x) = C1−i i(ȳ, y | x)

A(y, ȳ | x) = i
∞∑

n,m=0

1

n!m!
yα1 . . . yαnȳβ̇1

. . . ȳβ̇mA
α1...αn,

β̇1...β̇m(x)

The unfolded system for free massless fields is MV (1989)

? Rii1(y, y | x) = η H
α̇β̇ ∂2

∂yα̇∂yβ̇
C1−i i(0, y | x) + η̄ Hαβ ∂2

∂yα∂yβ
Ci1−i(y,0 | x)

? D̃0C
i1−i(y, y | x) = 0

R1(y, ȳ | x) = Dad
0 ω(y, ȳ | x) Hαβ = eαα̇ ∧ eβα̇ , H

α̇β̇ = eα
α̇ ∧ eαβ̇

Dad
0 ω = DL − λeαβ̇

(
yα

∂

∂ȳβ̇
+

∂

∂yα
ȳβ̇

)
, D̃0 = DL + λeαβ̇

(
yαȳβ̇ +

∂2

∂yα∂ȳβ̇

)

DL = dx −
(
ωαβyα

∂

∂yβ
+ ω̄α̇β̇ȳα̇

∂

∂ȳβ̇

)
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Non-Abelian HS algebra

Star product

(f ∗ g)(Y ) =
∫
dSdTf(Y + S)g(Y + T ) exp−iSATA

[YA, YB]∗ = 2iCAB , Cαβ = εαβ , Cα̇β̇ = εα̇β̇

Non-Abelian HS curvature

R1(y, ȳ|x)→ R(y, ȳ|x) = dω(y, ȳ|x) + ω(y, ȳ|x) ∗ ω(y, ȳ|x)

D̃0C(y, ȳ|x)→ D̃C(y, ȳ|x) = dC(y, ȳ|x)+ω(y, ȳ|x)∗C(y, ȳ|x)−C(y, ȳ|x)∗ω(y,−ȳ|x)
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3d conformal equations

Conformal invariant massless equations in d = 3

dxαβ(
∂

∂xαβ
±

∂2

∂yα∂yβ
)C(y|x) = 0 , α, β = 1,2 Shaynkman, MV (2001)

Rank r unfolded equations: tensoring of Fock modules Gelfond, MV (2003)

dxαβ(
∂

∂xαβ
+ ηij

∂2

∂yαi ∂y
β
j

)C(y|x) = 0 , i, j = 1, . . . r .

For diagonal ηij higher-rank equations are satisfied by

C(yi|x) = C1(y1|x)C2(y2|x) . . . Cr(yr|x) .

Rank-two equations: conserved currents{
∂

∂xαβ
−

∂2

∂y(α∂uβ)

}
T (u, y|x) = 0

T (u, y|x): generalized stress tensor. Rank-two equation is obeyed by

T (u, y |x) =
N∑
i=1

C+ i(y − u|x)C− i(u+ y|x)

Rank-two fields: bilocal fields in the twistor space.
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Dynamical currents (primaries)

J(u|x) = T (u,0 |x) , J̃(y|x) = T (0, y|x) Gelfond, MV (2003)

Jasym(u, y|x) = uαy
α
(

∂2

∂uβ∂yβ
T (u, y|x)

∣∣∣∣
u=y=0

)
J(u|x) generates 3d currents of all integer and half-integer spins

J(u|x) =
∞∑

2s=0

uα1 . . . uα2sJα1...α2s(x) , J̃(u|x) =
∞∑

2s=0

uα1 . . . uα2sJ̃α1...α2s(x) .

Jasym(u, y|x) = uαy
αJasym(x)

∆Jα1...α2s(x) = ∆J̃α1...α2s(x) = s+ 1 ∆Jasym(x) = 2

Differential equations: conventional conservation condition

∂

∂xαβ
∂2

∂uα∂uβ
J(u|x) = 0 ,

∂

∂xαβ
∂2

∂yα∂yβ
J̃(y|x) = 0
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3d conformal setup in AdS4 HS theory

For manifest conformal invariance introduce

y+
α =

1

2
(yα − iȳα) , y−α =

1

2
(ȳα − iyα) , [y−α , y

+β]∗ = δβα

3d conformal realization of the algebra sp(4;R) ∼ o(3,2)

Lαβ = y+αy−β −
1

2
δαβy

+γy−γ , D =
1

2
y+αy−α

Pαβ = iy−α y
−
β , Kαβ = −iy+αy+β

Conformal weight of HS gauge fields

[D,ω(y±|X)] =
1

2

(
y+α ∂

∂y+α
− y−α

∂

∂y−α

)
ω(y±|X) .

Pullback ω̂(y±|x) of ω(y±|x) to Σ: 3d conformal HS gauge fields
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Holography at infinity

AdS4 foliation: xn = (xa, z) : xa are coordinates of leafs (a = 0,1,2,) z is a

foliation parameter

Poincaré coordinates

W =
i

z
dxαβy−α y

−
β −

dz

2z
y−α y

+α

eαα̇ =
1

2z
dxαα̇ , ωαβ = −

i

4z
dxαβ , ω̄α̇β̇ =

i

4z
dxα̇β̇

[
dx +

i

z
dxαβ

(
yα

∂

∂yβ
− ȳα

∂

∂ȳβ
+ yαȳβ −

∂2

∂yα∂ȳβ

) ]
C(y, ȳ|x, z) = 0

Rescaling yα and ȳα̇ via

C(y, ȳ|x, z) = z exp(yαȳ
α)T (w, w̄|x, z) ,

wα = z1/2yα , w̄α = z1/2ȳα

T (w, w̄|x, z) satisfies the 3d conformal invariant current equation[
dx − idxαβ

∂2

∂wα∂w̄β

]
T (w, w̄|x, z) = 0
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Connections

Setting

W jj(y±|x, z) = Ωjj(v−, w+|x, z)

v± = z−1/2y± , w± = z1/2y±

manifest z–dependence disappears

DxΩjj(v−, w+|x, z) =
(
dx + 2idxαβv−α

∂

∂w+β

)
Ωjj(v−, w+|x, z)

Using

wα = w+
α + izv−α , w̄α = iw+

α + zv−α

in the limit z → 0 free HS equations take the form

? DxΩjj
x (v−, w+|x,0) = dxα

γdxβγ
∂2

∂w+α∂w+β
T jj(w+,0 | x,0) ,

?
[
dx − idxαβ

∂2

∂w+α∂w−β

]
T j 1−j(w+, w−|x,0) = 0 .

T jj(w+, w−|x,0) = ηT j 1−j(w+, w− | x,0)− η̄T1−j j(−iw−, iw+ | x,0)
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Towards nonlinear 3d conformal HS theory

Conformal HS theory is nonlinear since conformal HS curvatures inher-

ited from the AdS4 HS theory are non-Abelian Fradkin, Linetsky (1990)

Rxx(v−, w+ | x) = dxΩx(v−, w+ | x) + Ωx(v−, w+ | x) ?Ωx(v−, w+ | x)

It is important

[v−α , w
+β]? = δβα

The equation on 0-forms deforms to nonlinear twisted adjoint represen-

tation

dT (w±|x)+ Ω(
∂

∂w+β
, w+

α )◦T (w±|x)−T (w±|x)◦Ω(−iη
∂

∂w−α
,−iηw−|x) = O(T2) .

Matter fields can be added via the Fock module

(d+ Ω0(v−, w+|x)) ? Ci(w+|x) ? F = 0
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Reduction to free CFT3

The unfolded equation

DxΩjj
x (v−, w+|x,0) = Hαβ

∂2

∂w+α∂w+β
T jj(w+,0 | x,0)

remains free if

T jj = 0 −→ Jasym = 0 or Jsym = 0

depending on whether A-model or B-model is considered. For these

cases the model remains free in accordance with the Klebanov-Polyakov

Sezgin-Sundell conjecture.

Free models are equivalent to the reductions of the HS theory with

respect to P -involution y ↔ ȳ which is possible for the A and B models.

For HS theory with general phase η parameter such reduction is not

possible: no realization as a free conformal theory.

Non-Abelian contribution of conformal HS connections has to be taken

into account.
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Higher-spin theory and quantum mechanics

Rank-one equation can be rewritten in the form(
ih

∂

∂XAB
+

h2

2m

∂2

∂Y A∂Y B

)
Ψ(Y |X) = 0 , A,B = 1, . . .M

Algebra of symmetries: algebra of polynomials of PA = ∂
∂Y A

and Y B:

conformal HS algebra. sp(2M) :

KAB = Y AY B , LAB = {Y A , PB} , PAB = PAPB

Time-like directions in MM are associated with positive-definite XAB

XAB = tMδAB

Restriction to t gives M-dimensional Schrodinger equation(
ih
∂

∂t
+

h2

2m
δAB

∂2

∂Y A∂Y B

)
Ψ(Y |t) = 0

Y A are now interpreted as Galilean coordinates.
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In unfolded dynamics it is easy to introduce coordinates in which any

symmetry h of a given system acts geometrically by introducing a non-

zero flat connection of h. Different symmetries require different spaces

and connections. Description of the same system in different space-

times gives holographically dual theories.

Being obvious in unfolded dynamics, where it refers to the same twistor

space (Y A) in other approaches holographic duality may look obscure.

Maximal finite dimensional symmetry algebra sph(M |R) Valenzuela (2009)

TAB = −
i

2
YAYB , tA = YA

[TAB , TCD] = CBCTAD + CACTBD + CBDTAC + CADTBC

[TAB , tC] = CBCtA + CACtB , [tA , tB] = 2iCAB

Relativistic and nonrelativistic symmetries of Schrodinger equation be-

long to sph(M |R) . Each symmetry acts geometrically in respective space.
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Any HS geometry is holographically dual to some quantum mechanics.

For example, AdS geometry is dual to harmonic potential

U(Y ) =
1

2
mω2Y AY BδAB

where −Λ ∼ λ2

1

2
mω2 = λ2 .

dS geometry is holographically dual to the inverted harmonic potential

not too surprisingly in the context of inflation.
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Conclusions

Holographic duality relates theories that have equivalent unfolded for-

mulation: equivalent twistor space description.

AdS4 HS theory is dual to nonlinear 3d conformal HS theory of 3d currents

Both of holographically dual theories are HS theories of gravity

Beyond 1/N

Free boundary theories are dual to truncations of HS theories

Holography of relativistic and nonrelativistic theories
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To do

Nonlinear 3d conformal HS theory

Actions

Generating functional for correlators

Multiparticle States

AdS3/CFT2 and Gaberdiel-Gopakumar conjecture
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GGI Program

“Higher Spins, Strings and Dualities”

,

Florence, March 18 - May 10, 2013

Organizers:

D.Francia, M.Gaberdiel, I.Klebanov, A.Sagnotti, D.Sorokin, M.Vasiliev
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Conformal frame

D in the twisted adjoint representation is realized by the second-order

operator

{D ,C}∗ =

(
y+αy−α −

1

4

∂2

∂y+α∂y−α

)
C

Fields C inherited from AdS4 theory are not manifestly conformal.

Conformal frame: Wick star product

(fN ? gN)(y±) =
∫
µ(u±) exp(−u−αu+α)fN(y+, y−+ u−)gN(y+ + u+, y−)

fN(y±) = exp−
1

2
εαβ

∂2

∂y−α∂y+β
f(y±)

{DN , . . .}? =
1

2

(
y+α ∂

∂y+α
+ y−α

∂

∂y−α

)
+ y−α y

+α + 1

T (y±|x) = exp−y−α y+αCN(y±|x)

? DN(T (y±)) =
1

2

(
y+α ∂

∂y+α
+ y−α

∂

∂y−α
+ 2

)
T (y±)
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Doubling of AdS

z = 0 is smooth point in rescaled variables

Continuation z → −z : AdS doubling

Parity automorphism

P (z) = −z

P -even solution: Neumann boundary condition

P -odd solution: Dirichlet boundary condition
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Unfolding as twistor transform

Twistor transform

@
@
@
@R

�
�

�
�	

C(Y |x)

M(x) T(Y ) .

η ν

WΩ(Y |x) are functions on the “correspondence space” C.

Space-time M : coordinates x. Twistor space T : coordinates Y .

Unfolded equations describe the Penrose transform by mapping functions

on T to solutions of field equations in M.

Being simple in terms of unfolded dynamics and the corresponding

twistor space T, holographic duality in terms of usual space-time may

be complicated requiring solution of at least one of the two unfolded

systems: a nontrivial nonlinear integral map.
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Global symmetries

Global symmetry transformations that leave a vacuum connection w0

invariant are described by εgl(x)

D0εgl = 0

dimh independent solutions.

h-module V can be treated as lmax(V )-module where lmax(V ) = EndV .

Hence lmax(V ) is the maximal symmetry of the linear unfolded equations

with dynamical fields valued in V .

Let WΩ
0 be some solution of the unfolded system may be containing

some nonzero pΩ-forms with pΩ 6= 1. symmetry parameters εΩgl(x) satisfy

dεΩ
gl + εΛ

gl
∂GΩ(W )

∂WΛ

∣∣∣∣
W=W0

= 0 .

The 0-form part imposes constraints: global symmetries should leave

invariant vacuum values of 0-forms in the system.
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Idea of Nonlinear Construction

straightforward construction of nonlinear deformation quickly gets com-

plicated.

trick: doubling of spinors and Klein operators

ω(Y |x) −→W (Z;Y ;K|x) , C(Y |x) −→ B(Z;Y ;K|x)

to be accompanied by equations that determine the dependence on ZA

in terms of “initial data”

ω(Y ;K|x) = W (0;Y ;K|x) =
∑
ij=1,2 k

ik̄jωij(Y |x)

C(Y ;K|x) = B(0;Y ;K|x) =
∑
ij=1,2 k

ik̄jCij(Y |x) .

S(Z, Y,K|x) = dZASA is an connection along ZA

Klein operators K = (k, k̄) generate chirality automorphisms

kf(A) = f(Ã)k , k̄f(A) = f(−Ã)k̄ , A = (aα , āα̇) : Ã = A = (−aα , āα̇)

P (Y ) = Pαα̇yαȳα̇ −→ P̃ (Y ) = −P (Y ) , M̃(Y ) = M(Y ) .
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Nonlinear HS Equations

HS start-product

(f ? g)(Z, Y ) =
∫
dSdTf(Z + S, Y + S)g(Z − T, Y + T ) exp−iSνT ν

[YA, YB]? = −[ZA, ZB]? = 2iCAB , Z − Y : Z + Y normal ordering

Inner Klein operators:

κ = exp izαyα , κ̄ = exp izα̇y
α̇ , κ ? f = f̃ ? κ , κ ? κ = 1

HS equations:

W = (d+W ) + S , W = dxnWn , S = dzαSα + dz̄α̇S̄α̇

W ?W = i(dZAdZA + dzαdzαF (B) ? k ? κ+ dz̄α̇dz̄α̇F̄ (B) ? k̄ ? κ̄) ,

W ? B = B ?W

Manifest gauge invariance

δW = [ε,W]? , δB = ε ? B −B ? ε , ε = ε(Z;Y ;K|x)

29



Integrating out Space-Time

x− Z decomposition:

dW +W ?W = 0
dB +W ? B −B ?W = 0
dS +W ? S + S ?W = 0
S ? B −B ? S = 0
S ? S = i(dZAdZA + dzαdzαF (B) ? k ? κ+ dz̄α̇dz̄α̇F̄ (B) ? k̄ ? κ̄)

Nontrivial equations are free of space-time differential d: Space-time

dependence is locally pure gauge:

W (Y, Z|x) = g−1(Y, Z|x) ∗ dg(Y, Z|x)

B(Y, Z|x) = g−1(Y, Z|x) ∗B0(Y, Z) ∗ g(Y, Z|x)

S(Y, Z|x) = g−1(Y, Z|x) ∗ S0(Y, Z) ∗ g(Y, Z|x)

HS equations describe two dimensional fuzzy hyperboloid in noncom-

mutative space of YA and ZA. Its radius depends on HS curvature B(x).

d = 3: no dotted spinors
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Holographic conformal currents

Equation on 3d 0-forms

Dtw
x T (y, ȳ|x) = dxT (y, ȳ|x) + 4dxαβ

∂2

∂yα∂ȳβ
T (y, ȳ|x) = 0

describes two sets of conserved currents of al spins s ≥ 0 distinguished

by their symmetry

Jsym(y, ȳ|x) = T (y, ȳ|x)+T (y, ȳ|x) , Jasym(y, ȳ|x) = T (y, ȳ|x)−T (y, ȳ|x) , ∆ = 1+
1

2
(yα

∂

∂yα
+ȳα

∂

∂ȳα
)

∆(Jsym(0,0|x)) = 1 , ∆(Jasym(0,0|x)) = 2 .
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Invariant functionals via Q–cohomology

Equivalent form of compatibility condition

Q2 = 0 , Q = GΩ(W )
∂

∂WΩ

Q-manifolds

Hamiltonian-like form of the unfolded equations

dF (W (x)) = Q(F (W (x)) , ∀F (W ) .

Invariant functionals

S =
∫
L(W (x)) , QL = 0 (2005)

L = QM : total derivatives

Actions and conserved charges: Q cohomology

for off-shell and on-shell unfolded systems, respectively
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2M–form

Ω2M(T ) =
(
dWA ∧

(
iWBdX

AB − d Y A
))M

T̃ (W, Y |X)

is closed in MM × RM(WB)× CM(Y A)

The charge

q = q(T ) =
∫

Σ2M
Ω2M(T )

is independent of local variations of a 2M-dimensional surface Σ2M .

Remarkable output: conserved charges can be expressed as integrals

over the twistor space T

Solutions of current equation form a commutative algebra

η(W, Y |X) = ε(WA, Y
C −iXCBWB) , T̃η(W, Y |X) = η(W, Y |X)T̃ (W, Y |X) ,

η(W, Y |X) is a polynomial parameter representing global HS symmetry.

q(T̃η) with various η(W, Y |X) generate complete set of conformal HS

conserved charges. M = 2: all conserved charges built from bilinears of

free 3d massless fields.
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Higher rank as higher dimension

A rank–r field in MM ∼ a rank–one field in MrM with coordinates XAB
ij .

Y Ai → Y Ã , Ã = 1 . . . rM

Embedding of MM into MrM

XAB
11 = XAB

22 = . . . = XAB
rr = XAB

3d conformal currents:

a rank-two field in M2 (d = 3) ∼ rank-one field in M4 (d = 4).

A single rank-one field in M4 describes all 4d conformal fields.

Realization of Flato-Fronsdal Thm
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What if the system is deformed by a potential? Formally, this does

not affect the consideration much. In presence of potential U(Y ) the

equation (
ih
∂

∂t
+

h2

2m
δAB

∂2

∂Y A∂Y B
− U(Y )

)
Ψ(Y |t) = 0

remains linear, hence exhibiting infinite symmetries. It can be interpreted

as flatness condition

DΨ(Y |t) = 0 , D = dt
∂

∂t
+Ω , Ω = ih−1dtH , H = −

h2

2m
δAB

∂2

∂Y A∂Y B
+U(Y ) .

In the 1d case with the single coordinate t, any connection is flat. Hence

it can be represented in the pure gauge form which is simply

Ω = exp−ih−1Ht d exp ih−1Ht
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